To address the triple bottlenecks of data scarcity, oversized models, and slow inference that hinder Cantonese automatic speech recognition (ASR) in low-resource and edgedeployment settings, this study proposes a cost-effective Cantonese ASR system based on LoRA fine-tuning and INT8 quantization. First, Whisper-tiny is parameter-efficiently fine-tuned on the Common Voice zh-HK training set using LoRA with rank = 8. Only 1.6% of the original weights are updated, reducing the character error rate (CER) from 49.5% to 11.1%, a performance close to full fine-tuning (10.3%), while cutting the training memory footprint and computational cost by approximately one order of magnitude. Next, the fine-tuned model is compressed into a 60 MB INT8 checkpoint via dynamic quantization in ONNX Runtime. On a MacBook Pro M1 Max CPU, the quantized model achieves an RTF = 0.20 (offline inference 5 × real-time) and 43% lower latency than the FP16 baseline; on an NVIDIA A10 GPU, it reaches RTF = 0.06, meeting the requirements of high-concurrency cloud services. Ablation studies confirm that the LoRA-INT8 configuration offers the best trade-off among accuracy, speed, and model size. Limitations include the absence of spontaneous-speech noise data, extreme-hardware validation, and adaptive LoRA structure optimization. Future work will incorporate large-scale self-supervised pre-training, tone-aware loss functions, AdaLoRA architecture search, and INT4/NPU quantization, and will establish an mJ/char energy–accuracy curve. The ultimate goal is to achieve CER ≤ 8%, RTF < 0.1, and mJ/char < 1 for low-power real-time Cantonese ASR in practical IoT scenarios.
Loading....